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Abstract— Vision aided dynamic exploration on bipedal
robots poses an integrated challenge for perception and control.
Rapid walking motions as well as the vibrations caused by the
landing-foot contact-force introduce critical uncertainty in the
visual-inertial system, which can cause the robot to misplace its
feet placing on complex terrains and even fall over. In this paper,
we present a streamlined integration of an efficient geometric
footstep planner and the corresponding walking controller for
a humanoid robot to dynamically walk across rough terrain
at speeds up to 0.3 m/s. To handle perception uncertainty
that arises during dynamic locomotion, we present a geometric
safety scoring method in our footstep planner to optimally select
feasible path candidates. In addition, the real-time performance
of the perception pipeline allows for reactive locomotion such
as generating a new corresponding swing leg trajectory in mid-
gait if a sudden change in the terrain is detected. The proposed
perception-control pipeline is evaluated and demonstrated with
real experiments using a full-scale humanoid to traverse across
various terrains.

I. INTRODUCTION

A primary benefit of a bipedal design over tradition
wheeled platform is the potential for greater mobility similar
to that of humans. Increased mobility in legged locomotion
opens the possibility for bipedal robots to traverse unstruc-
tured environments such as in disaster response scenarios.
Although bipedal locomotion provides extended maneuver-
ability, it requires careful planning and control to safely
walk across unstable terrains without falling. This poses
an integrated challenge for the robot to perceive and plan
feasible footsteps in a fraction of a second, especially with
dynamic motions where the robot may have to adapt its
swing-leg trajectory on-the-fly in order to safely recover
from sudden changes in the terrain. More specifically, the
robot must be able to perceive, plan,and react to the given
environment in real-time without falling down. To do so, we
propose an efficient sampling-based geometric planner for
generating feasible footsteps, and a robust walking controller
that can handle dynamic footstep updates in real-time. To
safely account the sensor uncertainty and motion estimation
error that arise during dynamic locomotion, we implement
a geometric safety scoring method that allows for heuristic

1Is with the Humanoid Robot Research Center, Department of Mechan-
ical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Korea jhoh@kaist.ac.kr

2Is with the Scalable Graphics, Vision & Robotics Lab, School of
Computing, Korea Advanced Institute of Science and Technology, Korea

3Is with the Neuro-Machine Augmented Intelligence Laboratory, School
of Computing, Korea Advanced Institute of Science and Technology, Korea

4Is with the Korea Atomic Energy Research Institute (KAERI), Korea

Fig. 1. Terrain reconstruction and footstep placements dynamically
generated to traverse rough terrain. Terrain is represented as green octomap
from planar regions collected from the depth camera. Feasible footsteps
are continuously generated, where the change in color represents footstep
sequence.

selection of an optimal candidate out of the multiple feasible
paths. Overall, our main contributions are:
• Streamlined integration of the mapping, planning, and

control pipeline for continuous locomotion over rough
terrain at speeds up to 0.3 m/s, which is faster than
comparable published works to the best of the author’s
knowledge.

• Dynamic on-the-fly replanning of the landing footstep
position in middle of the leg swing-phase for reactive
locomotion robust to sudden changes in terrain.

• Extensive experimental results of the proposed
perception-control pipeline using a full-sized humanoid
in various environments featured by stepping stones,
dynamically movable stepping stones, or narrow path.

II. RELATED WORK

With recent availability of robust quadruped platforms,
there has been much advancements in vision-aided dynamic
exploration on legged robots [1]–[4]. We focus exclusively
on bipedal research due to the fact that feasibility check in
bipedal planners include a more complex foot surface area
and orientation rather than simple point-contact commonly
used in quadruped systems. One forerunner in this field
[5] implemented an online footstep planner for the Honda
ASIMO robot based on 2D A* search to navigate dynamic
environments but utilized off-board motion capture system.
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The work of [6] successfully implemented real-time percep-
tion and planning all on-board for stair-like terrains using
stereo images by simplifying planar regions to straight edges
with a line detector.

Our footstep planner resembles the geometric approach
studied in [7]. This work differs from our work by first
generating a 2D path to a known fixed global goal, and
then individual footsteps along the path, mainly focusing
on avoiding obstacles in 2D space. In contrast to navigating
towards the global goal, the research in [8], [9] proposed
continuous walking autonomy using short-horizon footstep
planning within safe local regions to traverse over uneven
terrain. Their approach, rather than discrete graph-based
search, used continuous search space algorithm based on
MIQP leading to optimal but long planning time of over
400 msec, which significantly reduced the overall pipeline.

The researches of [10], [11] are most similar to ours in that
it utilizes discrete search technique with heuristically scored
nodes over the generated 3D map of the terrain. However,
there is no reactive modification during the leg swing phase
once a feasible footstep is generated. Our approach differs
in that our pipeline allows for on-the-fly replanning and
dynamically updating the landing footstep in order to react
to sudden detected changes in the terrain. A very recent
work [12] similarly showed highly dynamic performances
to quickly generate footsteps upon push-recoveries on rough
terrain. This work simplified the visual processing by utiliz-
ing color features to determine steppable regions.

Our footstep planner generates feasible footsteps deter-
mined as best effort within a fixed sample time of 5 millisec-
onds, or one control cycle. Best effort here refers to scoring
possible footstep array candidates, prioritizing candidates
with higher safety score based on distance from the edges
of the terrain.

III. SYSTEM OVERVIEW

In this work, we use the Gazelle legged platform [13],
which is a lightweight 13-DOF bipedal robot that is capable
of walking at relatively high speeds with 30 cm stride
with 0.5 sec step time (0.6 m/s). Previous works on this
platform include dynamic walking without any perception
capability [14] or push recoveries on flat grounds [15].
This is the first work to extend dynamic locomotion with
vision-aided footstep planner to autonomously traverse rough
terrain. To account for the new visual-inertial sensor suite,
we modify the robot configuration to rotate the waist 180◦so
that the robot appears to walk backwards. While this new
configuration has no affect on walking performance, it pre-
vents the robot knees from obscuring the FOV of the depth
camera used for terrain mapping.

The software framework is divided among two PCs for
vision and motion control as shown in Figure 2. The vision
PC utilizes ROS to handle camera data, such as the Intel
T265 for high-speed VIO at 200Hz, and the Microsoft Kinect
Azure for time-of-flight depth camera at 30Hz. The Motion
PC runs on the custom PODO API software framework [16]
to leverage real-time performance, with whole-body motion

Fig. 2. Overall software diagram illustrating the flow of terrain map and
walking controller modules used in the system.

controller iterating at 500 Hz to accommodate the gener-
ated footstep data. This integration of ROS-PODO frame-
work [17], which was previously designed for a wheeled
robot in our previous work, is extended for interfacing with
a legged system.

IV. TERRAIN MAPPING

The terrain map is regenerated at every frame to allow fast
updates of the current scene. Instead of using Simultaneous
Localization and Mapping (SLAM) to create a global map
expanding over the whole environment, we focus on creating
a local map using only the most recent depth image. This
strategy alleviates the drifting error caused by perception
uncertainty, which can otherwise grow to be significant
without loop-closure corrections, as well as leading to sparser
local map that can more quickly detect dynamic changes in
the environment.

The overall procedure of our terrain mapping process is
shown in Fig. 3. The raw point cloud of the terrain, obtained
through the camera, is first transformed to the robots base
frame to fit the orientation of the world. The point cloud
is then down-sampled and cropped to remove points outside
the region of interest. We choose a 1 meter wide and 2 meter
long horizontal box as our default region of interest.

These parameters are adjusted to fit the resolution and
computation time trade-off depending on the traversing en-
vironment. RANSAC is used to segment the major planes

Fig. 3. Pictorial summary of obtaining the terrain map. Raw point cloud
of the terrain (left), major planes segmented using RANSAC (middle), 3D
octomap constructed for traversable regions (right).
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(a) Footstep sampling
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Fig. 4. These figures represent the main concept of our sampling-based footstep planner. (a) Our approach makes a footstep sample within the reachable
region randomly and connects a valid sample to a support footstep. (b) The sampling process constructs a tree structure consisting of multiple footstep
paths. This example shows two different paths colored by blue and red. (c) Our method computes the safety score using the multiple test points of a
footstep. The blue and red X marks represent the points that receives some scores and no score, respectively. Different sizes of marks indicate various
weight values of the safety scores.

Algorithm 1 FOOTSTEP PLANNING
Input: A steppable geometry G, a start footstep qinit
Output: A footstep path

1: T ← {qinit}
2: while termination condition is not satisfied do
3: qsup ← RandomSupportFootstep(T )
4: qrand ← RandomFootstep(qsup)
5: if V alidityTest(qrand, G) then
6: Connect qsup with qrand
7: Insert qrand to T
8: end if
9: end while

10: P ← FootstepPathCandidates(T )
11: return BestFootstepPath(P,G)

in the point cloud. Planes outside an angular range of the
plane of the floor are removed to ignore non-terrain planes
such as walls. Finally, the planes classified as traversable
are chosen and converted into an octomap for the planner.
Overall, a local 3D octomap of the terrain is generated with
1cm resolution of rates up to 15 Hz.

V. FOOTSTEP PLANNING

Utilizing the continuously updated terrain map, we gener-
ate feasible footsteps while preserving the real-time perfor-
mance for re-planning.

As shown in Fig. 4-(a), we define the steppable region as
the intersection of two parts: 1) geometric representations
of steppable objects and 2) pre-defined reachable region
where the robot can kinematically reach by taking one
step from the support footstep. Our framework obtains the
geometry of steppable objects from the vision system as
a grid-based volumetric representation (Fig. 3), and uses
kinematic conditions fine-tuned with empirical results to
obtain the reachable region with respect to the supporting
footstep position. Computing the explicit representation of
the steppable region, however, becomes an overhead in a
real-time system.

We, therefore, adopt a sampling approach instead of
explicitly determining the steppable region as shown in
(Alg. 1). The proposed footstep planner randomly samples
a next footstep within the reachable region of the support
footstep.Then our method then checks the geometric validity
of the sampled footstep as shown in Fig. 4-(a). The resulting
volumetric representation of the footstep resides within the
geometry of the steppable environment, indicating a geo-
metrically and kinematically feasible footstep. Our approach
connects the valid footstep to the support footstep but dis-
cards invalid samples. As shown in Fig. 4-(b), repeating this
random sampling process generates multiple viable footstep
paths in a tree structure. Each path of the footstep tree
consists of the sequential footsteps linked from a root to
a leaf.

With multiple feasible paths generated, the proposed plan-
ner chooses the best candidate based on safety score using
geometric information of the foot and steppable region.
Safety scoring accommodates for the perception uncertainty
in the terrain map or motion estimation error by quantifying
and selecting the safest path furthest from the edges of the
terrain. For example, two footstep paths shown in Fig. 4-(b)
are computed with different safety scores. The blue footstep
path, deemed the safer path, receives a higher safety score
than the red path because the generated footsteps in the
blue path are located further from the terrain edges. Our
method heuristically computes the safety of a footstep using
its surrounding test points as shown in (Fig. 4-(c)), efficiently
checking whether the footstep is located nearby the edges.

Lastly, our method selects the footstep path having the
best safety score:

p∗ = argmax
p∈P

fsafety(p), (1)

where P = {p1, p2, . . . , pN} indicates a set of the N footstep
paths that our planner generates. We design the function
fsafety(p) that computes a safety score of the footstep path
p consisting of the M footsteps, p = {q1, q2, . . . , qM}:

fsafety(p) =

M∑
m=1

K∑
k=1

wm
k I(xm

k is ontoG), (2)
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where xm
k represents k-th test point of m-th footstep asso-

ciated with the footstep path p.
If a test point xm

k is onto the steppable objects G, our
planner makes a score as a weight wm

k depending on the
distance between the center of footstep and the test point;
e.g., we can use the radial basis function (RBF) kernel.
Otherwise, we give no score value at the test point. Note
that the indicator function I(·) in Eq. 2 returns 1 if the input
state is true and 0 if not. Based on the scoring policy, our
method selects the final footstep path with the highest safety
score, consisting of the geometry-aware safe footsteps.

Finally, the planner terminates when robot’s odometry
approximately reaches a desired distance or a desired number
of footsteps from the starting point. As we focused on local
perception and footstep generation, we did not implement a
global navigation strategy towards a specific goal. Rather,
we embedded a forward-driven-bias into our planner to
continuously generate steps until the robot reaches the end
of the course. This approach of planning only in local view
also helped speed up the pipeline by reducing the maximum
number of feasible steps in comparison to available methods
that account for global paths.

VI. WALKING PATTERN-GENERATOR

Given the collision-free and kinematically admissible ge-
ometric path, we generate CoM and foot trajectories over
time that maintains stability of the compliant LIPM. The
overall walking-pattern generator used for Gazelle platform
is composed of CoM & footstep trajectory generation and
posture-stabilization-controller. Walking patterns are gener-
ated based on the robot model, and the controllers are
constructed based on sensor feedback. This section will
briefly introduce the walking pattern generation method and
the required stabilization controller.

A. CoM & Footstep Trajectory
The pattern-generator is extended upon Preview Control

method [18] in order to create robot’s CoM trajectories
from determined footsteps from our planner. For the preview
control to be stable, the controller requires information of
the next two footsteps in advance. Therefore, for dynamic
walking, the planner is bounded to generate a minimum
footstep array length of two.

To accommodate on-the-fly replanning of the landing
footstep, we utilize an efficient vector-type struct called
Step Data Buffer (SDB) to store current and future footstep
positions and timing. The SDB can be dynamically modified
any time during the gait cycle by the planner or balancing
controller, even in middle of the swing-foot phase.This is
enabled through our specific implementation of a short-cycle
preview controller [19] to stably re-create CoM trajectories
at control interval of 500Hz.

B. Posture-Stabilization Controller
Main purpose of posture stabilization control is to achieve

stable walk according to the footstep information in SDB.
Posture stabilization is implemented using contact force con-
trol and vibration damping control [13] summarized below.

Fig. 5. Compliant-LIPM modeling of the real robot. Compliant-LIPM is
preferred over the standard LIPM model for improved controller perfor-
mance because in reality, the robot does not behave exactly like a ridged
body due to joint, structure stiffness and compliance between the ground
and the foot.

Fig. 6. CoM damping control performance tested through robot’s response
to being pushed in the lateral direction. Graphs show the sensor values
and the CoM position of the robot. (a) Without control, the body vibrates
upon push because of high stiffness. (b) The damping control raises system
damping and becomes robust to impact.

1) Vibration Damping Control: When a sudden external
impact is applied to a standing robot, the robot will oscillate
with a damped sinusoidal form because of the stiffness of
each leg joint, including the stiffness of the structure, and
the rubber pad attached under the feet. Such oscillation can
negatively affect perception accuracy of visual sensors due to
shaking motions and blurred images. By walking, however,
the robot receives such external impact continuously due
to contact force between its landing foot and hard ground.
Although the vibrations from these impact will damp out
after a certain period of time, the damping is not enough to
stabilize the robot during the continuous walking. Therefore,
it requires to increase the damping and decrease the stiffness
of the system. We used simple LIPM model for the walking
pattern generation; here compliant-LIPM model is be applied
for damping controller (Fig. 5).

From the state space form modeling of Compliant-LIPM
that has input of yu and output of yZMP , the full state
feedback controller can be constructed. The full state feed-
back is designed to specify new stiffness and damping of
the system, and estimated states are used for feedback.
Fig. 6 presents the result of the vibration damping controller.
Detailed description about modeling and state estimation are
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Fig. 7. Terrain mapping, footstep planning, and trajectory generation
pipeline integrated to walk continuously over uneven terrain at high speeds
of 0.3 m/s.

Fig. 8. Measured ZMP and CoM track the desired trajectory created by
the walking pattern generator resulting in stable balancing of the robot.

available in [13].
2) Contact Force Control: Foot contact force control is

necessary for the robot to walk on uneven ground or in
the case of perception error of the ground height. Such
instance results in unexpected, early landing or late landing
of the stepping foot, causing the robot to fall without proper
stabilization. To solve this problem, the reference force and
torque of the foot should be obtained from the reference
trajectory of the robot and the current state. In [14], we
proposed a method for generating the reference torque of
a foot using capture point feedback. The error between the
reference capture point and the measured capture point led
us to obtain the desired ZMP (cZMP). This cZMP was used
to generate the ankle torque reference.

Foot force control was performed in the vertical direction
using leg length control. The cZMP from the capture point
feedback was used to generate the reference vertical force
of both feet. According to relative position of cZMP about
foot position, the weight to be distributed to both feet is
determined. This was then transformed to the desired length
of both legs. Detailed description of ankle torque and force
control are in [20].

VII. EXPERIMENTAL RESULTS

We conduct various experiments to verify the performance
of our streamlined perception-control pipeline. The first
experiment was of the robot traversing scattered stepping
stones for three meters without stopping as our validity test
of the proposed system. We then present results of dynamic

locomotion of the robot updating swing-leg trajectories on-
the-fly as the terrain changes, and how the controller re-
sponds to stabilize the body. We lastly conduct experiments
on a narrow path the accuracy of the local mapping and
footstep planner. Of 20 repeated trials in the stepping stone
and narrow path, the robot successfully traversed 100% and
95% of the time. The dynamic locomotion showed lower
repeatability rate of 60% as discussed below.

The computation and performance, running on the mini
PC (6th gen i7 at 2.6GHz on 4 cores), of our proposed
system can be summarized below. Note that these modules
ran asynchronously on separate threads, and in the slowest-
case scenario where each module is fed serially, the total
pipeline computation is approximately 0.12 sec. Time for
each module are as below:
• Depth Image acquisition: 33 msec (30 FPS, Wide FOV)
• Planar region segmentation and mapping: 67 msec

(15Hz, 1cm resolution grid)
• Footstep planning: 5 msec (max 4 footsteps)
• Communication: 10 msec (ROS and PODO between 2

PCs)

A. System Performance Test

The first experiment was traversing across three meters of
scattered stepping stones displaced up to 0.3m apart for each
footstep as seen in Fig. 7. Using the proposed strategy, the
robot successfully traversed across at a high speed of 0.3
m/s with 100% success rate (tested 20 times). This default
test scene was simplest compared to following experiments
because the scene environment was static and thus did not
need on-the-fly replanning of foot trajectories. In addition,
the footstep positions generated from the planner were often
located at the center of the stepping stone terrain, showing
successful selection of path candidate with highest safety
score as implemented. With planner that prioritized footstep
positions at center of the terrain, traversing across stepping
stones were more tolerant to perception error. For example,
given the width of the stone and robot foot, the foot width
covered only 50% of the stone while the foot width covered
85% of the narrow path below.

B. Dynamic Walking on Changing Terrain

As an extension to the previous test, the dynamic locomo-
tion capability was tested by introducing a terrain disturbance
as the robot is walking. During the robot’s swing phase, the
position of the stone where the immediate landing foot would
have landed was changed approximately 8cm by pulling
on a rope. Of 10 repeated trials, the robot reacted to the
disturbance only 60% of the time. Low rate is reflected
by the low repeatability of the dynamic disturbance in the
test setup, where the rope would be pulled either too far
or too late for the robot to adjust in swing-leg trajectory.
As seen in Fig. 9 (a), during the short time-frame of the
robot’s swing phase, the pipeline was able to detect change
in terrain, and updated its swing-leg trajectory under 0.12
second to readjust its landing footstep. Without such dynamic
replanning capability, as shown in Fig. 9 (b), the robot would
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Fig. 9. (a) Terrain disturbance is introduced during the robot’s swing leg
phase. Dynamic replanning enables updated feasible footsteps on-the-fly.
(b) Without replanning, the robot is susceptible to terrain disturbances and
steps over the edge.

Fig. 10. Trajectory of the swing-foot updated on-the-fly within 0.12 seconds
after terrain change is introduced. ZMP and CoM trajectory is dynamically
modified, yet is continuous and stable.

be susceptible to sudden terrain changes because it would
not be able to update its landing footstep position on-the-
fly, causing the robot to fall over. The upper constraint on
how far the robot could readjust its swing-leg trajectory on-
the-fly was experimentally determined to be approximately
0.5m euclidean distance from its previous footstep. For test
values exceeding that bound, the robot would fall over in
mid foot-swing in which the measured ZMP could not
closely track the newly generated reframe ZMP. For sudden
terrain change below 0.1m, the streamlined perception could
generate newly feasible trajectory within 0.12sec, where the
new CoM and ZMP reference would smoothly update with
previous trajectory as shown in Fig. 10. As such, we set
upper bound on how much the robot could adjust its landing
foot position in mid-swing without falling over.

C. Precision Walking on Narrow Path

In our final experiment, we verify the precision of our
perception as well as our controller. To do so, we set up
an environment consisting of two platforms spanned by a
narrow path of length three meters and width 0.3m, which
is approximately half the width of the robot Fig. 11. In
contrast to previous stepping stone walking pattern, the
narrow path prevents the robot from placing both feet side-

Fig. 11. Walking continuously over narrow beam path to verify perception
and motion precision

by-side, and constrains the robot to place one foot in front
of the other. The small subset of kinematically reachable
area and geometrically steppable region requires significant
precision of the pipeline in order to not fall over the edge.
To do so, the map was densely generated by increasing the
resolution of the map to 0.5cm while narrowing the region of
interest in octomap in order to maintain mapping rate. The
robot successfully traversed narrow path with 90% accuracy
(tested 20 times), the two times failing due experimental
mishandling where the robot’s tethered power-cord got stuck
on the narrow path setup.

VIII. CONCLUSION

We present an efficient geometric footstep planner and
the corresponding walking controller that enables dynamic
humanoid locomotion over uneven terrain. We show dynamic
locomotion first through the real-time perception pipeline,
and second through the on-the-fly re-planning of the landing
footstep position in middle of the swing phase during the
robot gait cycle. The proposed perception-control pipeline
is demonstrated on a full-scale humanoid using only on-
board sensors and computing. For evaluation, we conduct
experiments where the robot traverses at high speeds of 0.3
m/s across uneven terrains including static stepping stones,
dynamically movable stepping stone, and narrow path. Our
current perception pipeline handles only uneven terrain with
flat surfaces. For future work, we aim to cover terrains with
varying heights and surface normal. We believe the current
framework will extend nicely without accruing significant
computation time.
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