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Asynchronous Motor Imagery BCI and
LiDAR-Based Shared Control System

for Intuitive Wheelchair Navigation
Jin Woo Choi , Junyong Park , Sejoon Huh , and Sungho Jo

Abstract—Mapping drivers’ thoughts directly to mobility
system control would make driving more intuitive as if the
mobility system is an extension of their own body. Such a
system would allow patients with motor disabilities to drive,
as it would not require any physical movement. In this article,
we therefore propose a brain-controlled mobility system that
analyzes real-time neural signals elicited from motor imagery,
an imagination of different body movements. As such asyn-
chronous brain–computer interfaces (BCIs) are prone to
error, our system contains shared control capabilities that
take into consideration continuously updated information of
the surrounding environment along with electroencephalo-
gram (EEG) signals to improve navigating performance with-
out precise and accurate control from the driver. With our
shared control method that uses a wheelchair with light
detection and ranging (LiDAR) and inertial measurement unit
(IMU) sensors, we held a comparative study in which partic-
ipants drove our wheelchair with and without our shared control approach using either our brain-controlled system
or a keyboard in a physical environment. The experimental results show that among the five participants, the three
participants that failed the driving task with the asynchronous BCI-based system could also successfully complete it
using our shared control approach. Furthermore, our approach narrows the gap between driving with neural signals and
driving with a widely used interface in terms of both elapsed time and safety. These results show not only the potential
of brain signals for driving but also the applicability of BCIs to real-life situations.

Index Terms— Brain–computer interface (BCI), electroencephalogram (EEG), light detection and ranging (LiDAR),
motor imagery, shared control.

I. INTRODUCTION

ASSISTIVE devices for users with motor disabilities sup-
port daily activities by executing or supporting intended
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actions. Such devices aim to replace the disabled body part,
imitating its functionality, and allowing users to feel them as a
natural extension of their own. One of the rising research areas
in this field is brain–computer interfaces (BCIs). BCIs analyze
neural activities from the brain to discriminate user intentions
and translate the corresponding brain signals into device
commands. With their inherent independence from movement,
BCIs are applicable to various applications for patients with
motor disabilities [1], [2]. Of the many noninvasive methods
to analyze neural activity in real-time, electroencephalogram
(EEG) has been widely applied to control numerous types
of devices such as humanoid robots, robotic arms, brain-
controlled keyboards, and simulations conducted with virtual
reality head-mounted displays [3], [4], [5], [6].

Moving from one location to another being an essential
component of daily life activities, BCIs have also been
applied to various systems to support users’ mobility [7],
[8]. As one of the widely used real-life devices that assist
individualized mobility, wheelchairs with BCIs were used
as prototypes for brain-actuated personal mobility systems
in previous studies. Some of the work uses motor imagery
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Fig. 1. Overview of our mobility system. The BCI module converts real-time brain signals into a command each second. The controller module
executes the command along with the perceived environmental information. The drivers are seated in the mobility system as they control it.

to control a wheelchair. Such studies include work by
Yu et al. [10] in which a wheelchair changed its movement by
having users perform different combinations of left-hand and
right-hand motor imagery, effectively allowing asynchronous
control with six steering functions. Another instance from
Zhang et al. [9] used a motor imagery-based BCI to select
a predefined destination within a familiar environment and
addressed its successful integration with automated wheelchair
navigation, eliminating the need for additional commands.
There have also been studies that use reactive brain sig-
nals to determine the driver’s intention with greater discrim-
ination performance than those using motor imagery. For
instance, Sakkalis et al. [11] proposed a wheelchair system
that utilized steady-state visually evoked potentials (SSVEPs)
presented through augmented reality glasses for wheelchair
control, receiving positive user feedback regarding its usability.
Another work by Kim et al. [12] utilized vibrotactile stimuli
placed on the hands and feet to control a wheelchair with
evoked brain signals, resulting in improved navigation with
enhanced BCI performance compared with motor imagery
alone. Reactive brain responses from different types of stimuli
have frequently been used in other studies to facilitate reliable
wheelchair navigation [13], [14], [15].

Despite ongoing research, existing BCI-based mobility sys-
tems have limitations that make them difficult to use in real
settings. Previous methods that drive mobility in real-world
environments utilize various types of stimuli, use sequences
of multiple different brain signals per a single movement
change, rely on synchronous control methods that only permit
user commands in some predefined circumstances, or utilize
automated driving with predefined map information. Although
such methods may redeem the error-prone problem of previous
BCI-based mobility systems, these methods are either less
intuitive or may restrict the user’s authority of control over
the system [16], [17]. Ideally, a new driving system would
be free from such limitations. The interface should intuitively
map thoughts into actions as motor imagery-based systems
while also exhibiting high control performance and ensuring

the driver’s authority over the system. These implementations
would make driving feel as if the system was a natural
extension of the body, able to be controlled simply by the
thought of moving. As assistive devices designed to support
individual movements, mobility systems should maximize the
driver’s safety, use asynchronous control such that drivers are
able to freely command the system throughout the entire oper-
ating period, and be applicable to various circumstances even
without prior information of the surrounding environment.

Our study aims to take a step toward this ideal driving
system by presenting an asynchronously driven shared control
mobility that continuously and intuitively maps the driver’s
thoughts into the left rotation, right rotation, forward move-
ment, and stopping the movement, as shown in Fig. 1. With
a major component of our interface being a motor imagery-
based BCI, our system directly maps the driver’s thoughts to
control without any form of stimulus. Unlike other studies
where synchronous control, preexisting environmental infor-
mation, or multiple different selections for a single movement
was alternatively used to rectify the high error rate of motor
imagery, we used information from light detection and ranging
(LiDAR) and inertial measurement unit (IMU) sensors to
keep the driver on the desired path despite minor motor
imagery discrimination errors. Our proposed shared control
policy therefore preserves the driver’s freedom of control
and does not require precise directional adjustments from the
user. To provide evidence that our method has potential for
real applications, our mobility system was also constructed
as a form of a motorized wheelchair, and the experiments
with different control conditions were conducted with the
driver in the wheelchair as they controlled it. In light of this,
the following summary highlights the contributions of this
work.

1) We proposed a shared control approach that utilizes
asynchronous BCI to continuously map users’ thoughts
into device commands while using the perceived envi-
ronmental information from LiDAR and IMU sensors to
rectify the error-prone problem of BCI.
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Fig. 2. Average brain activity patterns of our participants for the
motor imagery and concentration tasks. (a) Change in oscillatory brain
signals, between motor imagery and resting states. (b) Difference in
concentration ratio between concentration and resting states.

2) A mobility system driven by our shared control capa-
bilities was constructed, and experiments with different
control conditions were conducted in a real-world setting
to analyze and compare their navigation performance.

The rest of this article is organized as follows. Section II
introduces an implementation of our brain-controller interface
which discriminates motor imagery and concentration states
of users. Section III proposes our shared control design in
detail. Section IV describes our experiment containing user
training and the driving tasks. Section V presents the results
of our experiment. Finally, Sections VI and VII convey the
discussion and conclusion of this study.

II. BRAIN-CONTROLLER INTERFACE

As our mobility system utilizes signals from brain activities
during motor imagery and concentration, it is necessary to
train our system to analyze different brain activities of drivers
performing different tasks. When motor imagery is performed,
a degradation of brain activity oscillation known as event-
related desynchronization (ERD) occurs in the sensorimotor
areas, mainly from the region corresponding to the imagined
movement [18], [19]. As shown in Fig. 2(a), performing motor
imagery of hand movement is known to elicit ERD patterns
in the contralateral sensorimotor area. On the other hand,
as shown in Fig. 2(b), the concentration state of the drivers
can be measured from the frontal cortex, where different
frequency ranges of brain activity related to different mental
states. For concentration, the alpha, beta, and theta bands are
known to be closely related as alpha and theta correspond
to relaxation, and beta to arousal and alertness [20]. Our
system therefore constructs classification models to learn and
discriminate driver intentions using their brain patterns.

Fig. 3. Electrode positions used in our study. Electrodes in blue were
used to discriminate motor imagery states. Electrodes in yellow were
used to discriminate the concentrated state of users. Electrodes in gray
are the ground and reference positions.

A. Signal Acquisition and Processing
BrainProducts’ actiChamp and actiCAP (BrainProducts,

Munich, Germany) were used to record EEG data, which was
subsequently used to make classification models that analyzed
brain patterns and converted them into commands for the
controller module. As shown in Fig. 3, a total of 30 active
electrodes from the frontal cortex, sensorimotor cortex, and
mastoid positions were used according to the international
10–20 system. The ground and reference electrodes were
located at positions AFz and Fz, respectively. The data were
sampled at a rate of 500 Hz and the impedance of each
electrode was kept under 10 k� to gather high-quality signals.

B. EEG Classification
For the classification method used to convert real-time EEG

signals into the driving command once per every second,
we used two different classification models simultaneously:
one to classify motor imagery and the other to classify
the concentration state. For the motor imagery classification
model, we used a ShallowConvNet model [21], a widely
used state-of-the-art deep learning architecture that extracts
oscillatory features and spatial patterns for EEG analysis. For
the concentration model, we applied a support vector machine
(SVM) [22] on the concentration ratio computed with the EEG
data of the frontal cortex.

1) Motor Imagery Classification: The EEG data from the
sensorimotor cortex (FC5, C5, CP5, FC3, C3, CP3, FC1, C1,
CP1, Cz, CPz, FC2, C2, CP2, FC4, C4, CP4, FC6, C6, and
CP6) were used to classify motor imagery tasks. For signal
preprocessing, an 8–36-Hz bandpass filter was applied to the
data. As most of the EEG data for training the model was
gathered on a different day to prevent participants from being
fatigued, average referencing was further applied to the data.

The ShallowConvNet used for our experiment takes the
most recent 2-s window of EEG data and classifies it into one
of three motor imagery states: left hand, right hand, and resting
state. As described in Fig. 4, the ShallowConvNet architecture
contains two convolutional layers for temporal and spatial
filtering, followed by a squaring nonlinearity, average pooling,
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Fig. 4. ShallowConvNet architecture used in this study to classify 2-
s-long EEG signals into a resting state, left-hand, or right-hand motor
imagery.

logarithmic activation, and a dense layer with softmax to
consider diverse band power ranges within multiple electrodes
used for discriminating motor imagery states.

2) Concentration State Classification: The EEG data from
the frontal cortex (FP1, FP2, AF3, and AF4) and mastoid
region (TP7, TP8, TP9, and TP10) were used to classify the
concentration state. To calculate the concentration ratio from
each electrode, a 1–40-Hz bandpass filter was applied to the
data. A rereferencing of the EEG data from the frontal cortex
was applied using the mastoid electrodes.

The classification model for concentration state also used
the most recent 2-s window of EEG data. As previous studies
reported that changes in theta, alpha, and beta waves are
associated with the concentration and resting state of users
[20], [23], the power spectral densities (PSDs) of these three
different frequency bands were used to calculate the concen-
tration ratio from each electrode

concentration = (θ + α) /β (1)

where θ , α, and β represent PSD values calculated from the
frequency ranges of 4–8, 8–12, and 12–30 Hz, respectively.
The four different concentration ratios calculated from the
four frontal electrodes were then used to construct the SVM
concentration model.

3) Generation of Commands for Mobility System: The last
2-s window of EEG data was used to classify both motor
imagery and concentration state in a parallel manner, produc-
ing a single command per second. Whenever motor imagery
was classified as left-hand or right-hand movement, the mobil-
ity system turned toward the corresponding direction. When-
ever motor imagery was classified as resting state, the mobility
system either moved forward or stopped moving depending
on whether the driver was classified to be concentrating or
not, respectively. To account for misclassification, the system
required at least two consecutive matching commands before
executing a movement, otherwise it maintained its previous
movement. The system also stopped moving for the user’s
safety when three consecutive commands were all different.
This implementation took into account the possibility that such
instances could be attributed to either the unreliability of the
processed brain signals or the user’s confusion in determining
the next movement to perform.

III. INTELLIGENCE-ASSISTED CONTROL DESIGN

Along with the commands continuously generated through
our brain-controller interface module, the surrounding map
information from the LiDAR and IMU sensors was used to

compensate for BCI’s error-prone problem. Our approach to
shared control consists of three primary components. First, the
construction of the navigational map, which assigns values to
each grid indicating the safety of the corresponding area based
on the distance to the nearest obstacle. Second, directional
planning, which adjusts the directional path the mobility
system should take by considering the safety of the movement
direction in addition to the user’s initially controlled direc-
tion. Finally, the directional path follower aims to refine the
system’s movement from the continuously adjusted directional
path. In this section, we introduce our shared control method of
using the two aforementioned sensors and our brain-controller
interface module in detail.

A. Simultaneous Localization and Mapping Using
LiDAR and IMU

Robot operating system (ROS) kinetic was used to inte-
grate our mobility system with a map of the surrounding
environment that also contains previously navigated paths.
Our interface used Velodyne LiDAR PUCK (VLP-16) and
Microstrain’s 3DM-GX5-25 IMU sensors attached to a 2-D
Cartographer simultaneous localization and mapping (SLAM)
system to track the position and orientation of the mobility
system [24]. The perceived position and orientation infor-
mation of the system from the Cartographer was used to
design our shared control method. The map of the surrounding
environment was also continuously merged with the previously
collected information and updated in the controller module.

B. Navigational Map Construction
The controller module made several modifications from the

continuously updated occupancy grid acquired through ROS,
which contained integer values ranging from 0 to 100 indicat-
ing how confident the system was of occupied regions. Using
the breadth-first search (BFS) algorithm, the occupancy grid
was transformed into a distance map, with each location being
assigned a label indicating the distance between it and the
nearest occupied region. The regions labeled as occupied were
those with a confidence level above a specified threshold on
the occupancy grid.

This distance map was then finally converted into a nav-
igational map. The navigational map was constructed by
multiplying each region of the distance map by the difference
between its confidence level on the occupancy grid and 100,
the highest possible confidence level. Since the difference can
be seen as the likeliness of vacancy, a higher value on this
navigational map therefore represented a higher chance of the
corresponding area being vacant and further away from nearby
obstacles. This navigational map was then used for directional
planning to search for a path that minimizes the chances of
collision.

C. Gaussian Distribution-Based Directional Planning
To ensure safe navigation and rectify unstable paths due to

inaccuracies from the asynchronous BCI, we devised a direc-
tional path planning method based on probability distributions
using the continuously updated navigational map. The method
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aims to avoid collision and estimate the driver’s intended path
despite imprecise control from the BCI module. This planning
was activated whenever the forward command was accordingly
sent to the controller module as either the first command
of operation or the command following a rotation command.
The initial path was set as a straight line from the mobility
system’s position toward the direction it faced at the time of
the command. The desired path was updated as the mobility
system’s position changed within Cartographer to account for
obstacles encountered near the initial path.

First, the closest point (i, j) on the initial directional path
from the current position of the mobility system, or the
projection of the position of the mobility system onto the path,
was calculated using the following equation:

i = xt cos2θ + (yt − y0) sinθcosθ + x0sin2θ

j = yt sin2θ + (xt − x0) sinθcosθ + y0cos2θ (2)

where t represents time, (x0, y0) is the starting position of the
desired path, θ is the angle counterclockwise from the x-axis
of the map to the path, and (xt , yt ) is the current position of
the mobility system. This is done in order to disregard minor
differences between the actual position of the mobility system
and the initial path, as the actual position may not be on the
path (as will be discussed in Section III-D regarding positional
proportional–integral–differential (PID) control).

This projected position was then used to update the path
the mobility system should follow by calculating the scores
of the possible linear paths from the current point. Scores of
the paths from −90◦ to 90◦ away from the initial path with a
step interval of 2◦ were calculated as follows given the values
from the navigational map:

S (φ)=

lφ∑
l=0

wp∑
w=−wp

N (i + lcosφ − wsinφ, j + lsinφ+wcosφ)

{φ ∈ 2Z|θ − 90≤φ ≤ θ + 90} (3)

where lφ represents the distance to the first obstacle when
taking path φ, wp is a predetermined half-width for every
path to account for the system not staying directly on the
path during PID control, and N is the latest version of the
navigational map. Thus, each score for some φ is a summation
of all values in the navigational map that belong to the
rectangular area that has a starting edge with midpoint (i, j)
and an ending edge at the first obstacle encountered when
moving toward φ.

In order to prioritize the direction of the initial path,
as that direction was where the driver intended to drive toward
and to penalize directions that differ greatly from the initial
direction [25], the range of angles was mapped to a Gaussian
distribution

N (φ; µ, σ) =
1

√
2πσ 2

exp
[
− (φ − µ)2 /2σ 2

]
(4)

where µ and σ represent the mean and standard devia-
tion of the Gaussian distribution, respectively. The calculated
Gaussian probability was then multiplied by the previously
calculated scores for the possible paths, and the direction with

the greatest score was chosen to be the new path as seen in
the following equation:

rot = arg max
φ

S (φ) ·N (φ; θ, π/6) . (5)

Thus, by applying the parameters θ and π/6 to the Gaussian
distribution, the equation prioritizes setting the initial path
direction as the highest priority, penalizes directions further
from the initial path, and considers primarily the range from
−90◦ to 90◦ from the initial direction.

D. Positional PID-Based Directional Path Follower
While our directional planning may continuously update

the direction the mobility system should move along with
constantly changing information it perceived, immediately
positioning the mobility system to such frequently changing
direction may cause jerky movements that may adversely
affect the status of drivers as well as the performance of BCI.

To smoothly direct our mobility system to a desired path
that may continuously change, we additionally formulated a
positional PID-based directional path follower inspired by the
conventional PID motor control [26]. We first calculated the
error of the current position with respect to some desired paths
as follows:

err (t) = (xt − x0) sinθ − (yt − y0) cosθ (6)

where the variables mentioned in the equation have the same
definitions as those from Section III-C. Thus, the error rate
was defined by the perpendicular distance between the desired
path and the current position of the mobility system. This
error was updated at a frequency of 50 Hz, which was
determined considering the specifications of the used sensors.
Furthermore, the sign of the error rate provides information on
whether the current position was to the left or right side of the
desired path, which can then be used to decide which motor
should be quickened to adjust the direction of the mobility
system.

Then, the PID value was calculated using the following
equation:

pid (t) = K p|err (t) | + Ki

∫ t

0
|err (t) |dt + Kd

d
dt

|err (t) |

(7)

where K p, Ki , and Kd are PID coefficients indicating pro-
portional, integral, and derivative parameters, respectively.
These parameters were adjusted by trial and error with vary-
ing weights placed on the mobility system and remained
unchanged for all participant experiments.

The pulsewidth modulation (PWM) for left-hand and right-
hand motors were therefore determined as follows:

(vl , vr ) =


(
v f + min (vmax, pid (t)) , v f

)
, err (t) < 0(

v f , v f + min (vmax, pid (t))
)
, err (t) > 0(

v f , v f
)
, otherwise

(8)

where v f represents a preselected initial velocity for forward
movement, and vmax is a preselected maximum threshold
for velocity. With this control approach, the mobility system
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Fig. 5. (a) Flow of the training tasks during the motor imagery and concentration training sessions. (b) Figure-8 track we used for the driving
experiments. Participants were to freely and continuously command the mobility system as they followed the informed 8-shaped path.

could follow the desired path computed by the directional
planning method using the positional information updated by
Cartographer as feedback.

E. Collision Avoidance
In order to avoid collisions, a distance threshold was

selected. If the mobility system was within the threshold of
an obstacle, the mobility system would automatically stop and
only allow further commands that would increase the distance
from the obstacle. For rotation commands in such cases, the
mobility system only performed rotations in place. Similar
policies were applied to forward commands. If an obstacle was
detected within the threshold but another path was determined
through directional planning to avoid a collision, the system
turned in place to direct the system toward the newly found
path. We applied such a metric in all our driving experiments
to ensure the safety of participants.

IV. EXPERIMENT

To evaluate our mobility system and our shared control
method, we recruited participants and asked them to drive our
system through a given track. In our experiment, participants
were to perform user training for our brain-controller interface
module and were asked to control our mobility system using
four different control conditions.

A. Participants
Five healthy male participants aged between 23 and

26 drove our mobility system. Prior to the experiment, all
participants were informed about the experimental procedures
and gave their written consent.

B. User Training for EEG Classification Model
Construction

As brain signals vary between individuals, training the
model with the EEG data collected from each participant
is an essential procedure for BCI applications. Prior to our
experiment, participants went through user training in which
their EEG data for motor imagery and concentration tasks were
collected and used for constructing the model.

The user training was split into two sittings, with each sitting
corresponding to one of the two models and the motor imagery
training preceding the concentration training, as shown in
Fig. 5(a). The user training was held in a soundproof room to
collect high-quality brain signals from participants in an envi-
ronment with minimal distractions. Participants were seated in
a comfortable chair in front of a desk with a monitor screen
and were instructed to gaze and follow the instructions shown
on the monitor screen.

1) Motor Imagery Training: The motor imagery training
consisted of multiple sessions, with each session consisting of
ten consecutive motor imagery trials. A single motor imagery
trial consisted of three different tasks in a randomized order:
left-hand grasping motor imagery, right-hand grasping motor
imagery, and resting.

Each task was a sequence of a 4-s preparation period,
a 6-s motor imagery period, and a 2-s resting period. In the
preparation period, either a cross cue indicating the resting
task or an arrow cue indicating the left or right task was
shown on the monitor screen. In the motor imagery period,
participants were instructed to perform the motor imagery task,
and virtual hands executing the motor imagery task were also
shown on the monitor screen to support imagery. Finally, in the
resting period, participants were expected to rest with minimal
movements such as eye blinks permitted. In the preparation
and motor imagery periods, participants were asked to avoid
movements including eye blinking and muscle movements as
much as possible.

Participants performed at least six training sessions and
were encouraged up to two additional sessions if they were
not fatigued.

2) Concentration Training: The concentration training con-
sisted of three sessions, with each session consisting of ten
consecutive concentration trials. A single trial consisted of
two different tasks in a randomized order: concentration and
resting.

Each task was a sequence of a 2-s preparation period and
a 10-s concentrating period. During the preparation period,
participants were allowed to make minimal movements such
as eye blinking to prevent eye fatigue. In the concentrating
period, either a cross cue or a blank screen was shown, and
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participants were instructed to either concentrate at the cross
cue or rest while avoiding movements, respectively. For the
cross cue, participants were instructed to imagine as if the cue
was pulling them into the screen and they were consequently
getting closer to the cue.

C. Experimental Task
The driving experiment was performed on a figure-8 track

surrounded by walls, as shown in Fig. 5(b). Participants
were seated on the mobility system and instructed to drive
through the track. The driving route for the participants, which
resembles the way the number is written, was the same for
all experiments: starting from a corner of the track, they
were expected to first drive the system forward toward the
intersection, then proceed through the intersection of the other
side and around the farther half to return to the intersection,
then finally move back to the starting position by driving
through the unvisited part of the track. The width of the track
used in our experiment was uneven and varied throughout,
making control of the mobility system and potential ways of
traversal more complex.

Participants were initially given 15 minutes to complete
each experiment. They were only instructed to complete the
driving route as fast and safely as possible, and participants
were able to freely observe their surroundings and determine
whether they should rotate, move forward, or stop the mobility
system on their own throughout all driving experiments. After
this time, they were allowed to either continue or give up if
they were stuck and too exhausted to complete the track.

D. Experimental Procedures
Considering that the velocity of our mobility system may

slightly vary throughout the experiment due to our PID-
based motor control, we asked participants to perform four
different driving experiments to compare the performance of
our proposed system. The experiments for each participant
were held in a randomized order, with the first experiment
held at least a day after the motor imagery and concentration
training sessions. The four conditions were as follows.

1) KBD-Only: Participants controlled the system with a
keyboard. The system rotated, stopped, or moved for-
ward depending on the key pressed by the participants.
Our shared control method using directional planning
was not applied for this condition. The term KBD was
used as an abbreviation to denote the use of a keyboard.

2) KBD-DP: Participants used a keyboard to drive the
system. However, the shared control method proposed
in this study was utilized in this condition. The term
DP was used as an abbreviation to denote the use of
directional planning.

3) BCI-Only: Participants were to drive the system using
the BCI module. Only the positional PID-based direc-
tional path follower was used in this condition.

4) BCI-DP: Participants used the BCI module to drive
the system with our directional planning-based shared
control method. Except for using a different interface
for control, this condition was the same as KBD-DP.

Unlike the BCI module, which required two consecutive
commands to be the same in order to proceed with the
corresponding movement, the commands were immediately
reflected when driving with a keyboard. The mobility system
was continuously and asynchronously controlled by the driver
on the wheelchair for all four conditions, with collision
avoidance being used considering the safety of participants.

E. Validation of BCI
Participants underwent a single motor imagery validation

session before driving the system to train the classification
model. The arrow cues were presented for a random dura-
tion, and participants were expected to perform corresponding
motor imagery. The acquired data were used as a validation
set to calibrate the classification model, and the model with
the maximum validation accuracy was selected to drive the
system. Participants with less than 75% maximum validation
accuracy were discouraged from undergoing the experiment,
as frequent misclassifications would result in erratic behavior
of the system and could potentially cause dizziness or motion
sickness.

To evaluate the concentration accuracy for each participant,
we applied a sixfold cross-validation on our concentration
classification model. We measured the true positive rate (TPR)
and false discovery rate (FDR) as well as concentration
classification accuracy to evaluate the discrimination of the
concentrated state of participants. TPR and FDR were calcu-
lated as follows:

TPR = TP/ (TP + FN) (9)
FDR = FP/ (TP + FP) (10)

where TP, FN, and FP represent the numbers of true positives,
false negatives, and false positives during cross-validation,
respectively.

F. Evaluation of Driving Performance
To investigate the driving performance of participants during

the four aforementioned conditions with our mobility system,
we considered two different metrics for evaluation: how fast
were the participants able to finish the given task, and how safe
was the mobility system driven. Thus, the elapsed time, rep-
resented as the time taken for the participant to drive through
the given task, and the path safety measures, calculated using
the average distance from the mobility system to the nearest
obstacle while driving, were used to compare the driving
performance of participants during the given tasks.

V. RESULTS

As participants were only instructed to continuously and
freely control the system to succeed on the given task, the
actual intention of participants with respect to each command
output could not be known and thus cannot directly mea-
sure the performance of BCI during the driving experiment.
Alternatively, we investigated the performance of BCI on each
individual by evaluating the data acquired prior to the driving
experiment. To also provide insight on how each participant
navigated the system under the four given conditions, the
trajectories participants underwent were conveyed.
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TABLE I
MOTOR IMAGERY AND CONCENTRATION EVALUATION RESULTS

Fig. 6. Validation accuracies of the used models from participants
regarding three motor imagery states.

A. Validation Results of BCI Classification
The number of training sessions each participant underwent

and their maximum validation accuracy for motor imagery
while training with the data from the training and valida-
tion sessions are shown in Table I. The average maximum
validation accuracy for the participants was 83.45%, with
participant S2 achieving the lowest validation accuracy of
79.22%, which was higher than our determined threshold of
75% for controlling the mobility system.

Fig. 6 further presents the confusion matrices that include
validation accuracies from the used models of classifying

TABLE II
TIME TO COMPLETION FOR EACH EXPERIMENT

left-hand grasping, right-hand grasping, and resting state motor
imagery for each participant. The results showed that for
four out of five participants, our BCI module was able to
discriminate the resting task most accurately out of the three
possible motor imagery classes. Participant S4 in contrast
showed the lowest accuracy while performing resting state
motor imagery with an accuracy rate of 72.34%.

Table I also shows the cross-validated TPR and FDR results
as well as the classification accuracy rate of each participant
for concentration. The average TPR and FDR rates for the
participants were 85.61% and 36.12%, respectively, and the
average concentration accuracy was 67.58%.

B. Performance Results for Keyboard Experiments
The times taken to finish the two keyboard experiments

are shown in Table II. The average time taken for the KBD-
Only experiment was 362.6 s, which was longer than the
average time taken for the KBD-DP experiment of 309.2 s.
The standard deviation was also greater for KBD-Only at
13.29 compared to KBD-DP’s 5.71, showing greater variability
for participants in KBD-Only. All five participants finished
both experiments within the 15-min limit but showed faster
completion for the KBD-DP experiment than for the KBD-
Only experiment.

C. Performance Results for BCI Experiments
The times for the two BCI experiments are also shown in

Table II. As can be seen from the results, only two participants
out of the five were able to complete BCI-Only, with one
participant finishing after 15 min. The sole participant who
was able to complete the task within the given time took 898 s.

By contrast, all participants were able to finish BCI-DP
within the given time, which represent the results for when
using BCI along with our shared control approach. The
average time taken for BCI-DP was 560.2 s with a standard
deviation of 65.59, inevitably showing more variability within
participants compared to both keyboard experiments. With par-
ticipant S4 taking the longest time of 684 s and all participants
finishing the track faster than BCI-Only, the results of using
our shared control method narrowed the gap between using
the keyboard interface and using asynchronous BCI without
the shared control support.
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Fig. 7. Measured distance between the mobility system and the nearest
obstacles throughout each driving task.

D. Path Safety Measures
The path safety measures indicating the average distance

between the mobility system and the nearest obstacle through-
out each driving task are shown in Fig. 7. As can be seen
in Fig. 7, participants maintained the greatest grand average
distance of approximately 1.08 m during KBD-DP. The grand
average distances for KBD-Only and BCI-DP came close at
0.94 and 0.90 m, respectively. The grand average distances
for KBD-Only and BCI-DP were within each other’s standard
deviations, with two participants S4 and S5 recording larger
distances during BCI-DP. Finally, BCI-Only had the shortest
distance of approximately 0.77 m.

VI. DISCUSSION

The aim of this study was to provide drivers with intuitive
and direct control over the mobility system while preserving
their authority throughout the entire driving period. We built
a mobility system that continuously maps motor imagery and
concentration to different driving commands, enabling drivers
to perform intuitive and direct asynchronous control with only
their brain signals. As such motor imagery-based BCIs are
prone to frequent errors, we proposed a shared control method
suitable for asynchronous BCIs to make the mobility system

more resistant to misclassifications. Furthermore, our system
could be applied to unfamiliar places and environments that
the mobility system never visited before, as we did not provide
any environmental information toward the goal point prior to
conducting our driving tasks.

The results of our driving experiment showed that our
shared control approach and directional planning algorithm
led to an improved driving performance by exhibiting higher
task completion and increasing safety. All participants suc-
cessfully completed BCI-DP within the given time, while only
two participants finished BCI-Only with one finishing within
15 minutes limit. With participants maintaining a larger dis-
tance from obstacles in BCI-DP than BCI-Only, our shared
control approach also exhibits greater safety by lowering the
chance of collision. It is also noteworthy that the average
distances for BCI-DP were quite similar to those for KBD-
Only, with two participants managing to take paths further
from the obstacles in BCI-DP.

Although the performances for BCI-DP did not exceed
the performances for the keyboard experiments, our study
still shows the potential of using BCI with shared control
for real-world mobility systems. Along with the trajectories
shown in Fig. 8 for each driving condition, it can be observed
in our results that using the shared control approach for
both types of interfaces resulted in a reduction of both the
variability of driving performance in elapsed time and the
complexity of the system’s movement throughout navigation,
which suggests that our method reduces the system’s reliance
on BCI’s classification accuracy. In terms of the difference
in trajectories between BCI and the keyboard, it becomes
more clear that the navigation performance between the two
interfaces was narrowed upon the application of shared control
for our experiment. The reduction of unstabilized movement,
particularly noticeable in BCI compared to the keyboard,
indicates a decrease in the user’s efforts to precisely direct
the wheelchair. The trajectory results thus demonstrate that
precise control is less demanding when our shared control is
in effect, which is a necessary component for interfaces like
BCIs that are error-prone.

Our shared control approach effectively enhanced naviga-
tion performance for asynchronous BCI in terms of elapsed
time for task completion, with all participants taking only
approximately twice as long for BCI-DP as they did for
the two keyboard experiments, and most failing to complete
BCI-Only. This result also signifies the narrowing of the gap
between driving with brain signals and using other widely
used interfaces, as our study’s elapsed time gap is substantially
smaller compared to previous studies that also compared BCI
with other interfaces such as keyboards or joysticks [11],
[12], [27]. Unlike previous studies that typically consumed
more than twice the average task completion time for BCIs
compared to other commonly used interfaces, and in some
cases relied on external stimuli or utilized additional biosig-
nals alongside brain signals, our approach offers practicality
by eliminating the need for external stimuli and achieved
improvements with asynchronous BCI that produces com-
mands solely from the user’s thoughts. Our mobility system
therefore lessens the gap between the two interfaces for driving
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Fig. 8. Driving trajectories of the participants during the four different
experimental tasks. The initial position of the mobility system is marked
with a red dot, and participants were to reach the green area to finish
the experimental task.

in terms of both safety and performance, taking a step toward
the application of BCI-based mobility systems in real life,
which would be helpful especially for people with motor
disabilities.

One of the unexpected issues from our study that negatively
affected control performance for our BCI system was the
discrimination of the user’s concentration state, which was
used to intuitively map with forward movement. Participants
may have found differentiating between concentrating and
not concentrating difficult as there is no clear definition of
what the thought of moving forward entails, unlike other
concentration tasks such as reading or solving questions
[28], [29]. New intuitive paradigms that help participants with
eliciting signals corresponding to concentration tasks may
need to be developed to improve intuitive driving, similar to
various training and control protocols with motor imagery [4],
[30], [31]. State-of-the-art BCIs are also affected by changes
in mental states and other psychological factors [32], [33].
Negative emotions such as anxiety, frustration, or distress
elicited by various driving situations, including but not limited
to the system suddenly stopping due to a detected obstacle,
the mobility system misbehaving due to misclassifications,
and the mobility system rotating too frequently, may have
caused deterioration in motor imagery performance [34],
[35], [36]. Unlike simulated scenarios in which the driver’s
safety is guaranteed or experiments similar to BCI-DP in
which control policies try to maximize the distance to obsta-
cles, the BCI-Only experiment is more prone to these situa-
tions, which could have negatively affected the participants by
causing frequent emotional changes.

As this study is merely a step toward a system that gives the
driver direct, intuitive control by mapping the imagination of
hand movements to rotations of our mobility system while
supporting BCI’s error-prone problem with shared control
capabilities, further work must be done to reach the final goal
of providing a control experience so intuitive that users feel
as if the mobility system was a natural extension of their
body. Our system currently gives a limited number of com-
mands and control options to the driver, as the degree of
directional movement and velocity cannot be adjusted by the
users themselves. Research on giving the driver more control,
perhaps by using the strength of neural patterns to change the
velocity and directional degree with which the system moves,
would prove to be beneficial for achieving such a system.
Developing better classification models for BCIs would also
solve the issues caused by low BCI accuracy. Finally, although
the system introduced in this study aimed to provide intuitive
control and preserve the authority of control for drivers, drivers
may possibly experience fatigue as the system requires them
to maintain motor imagery or remain focused to sustain its
corresponding operation. Thus, further work on improving the
semiautonomous driving experience for asynchronous BCI-
based control should be explored to lessen the workload of
drivers while maintaining their dominance over the system.

There are also some existing limitations in our experiment.
A small sample size due to our criteria of permitting only
participants with discriminant brain patterns is one instance.
Our future research will thus conduct an investigation into
different experimental designs aimed at training users to
produce improved brain signals related to motor imagery
and forward movement of the device, which will involve
diverse groups of participants including those with disabilities.
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Time restrictions for the driving experiment may serve as
another limitation, as participants had to drive the mobility
system in all four conditions and extensive experiment time
would cause fatigue while driving the system. Such limitations
and constraints for our experimental design were inevitable for
our study as the safety of participants was considered as our
top priority.

VII. CONCLUSION

In this study, we proposed an asynchronous BCI-based
mobility system that utilizes motor imagery and concen-
tration to directly map the driver’s intentions for control
while addressing its error-prone challenges with shared control
capabilities using LiDAR and IMU sensors. The experimental
results indicate that the shared control approach not only
facilitates users who would otherwise struggle to operate the
system with BCIs to accomplish the driving task successfully
but also enhances both safety and elapsed time for navi-
gation in real-life environments. Our approach narrows the
gap between driving using neural signals and driving using a
keyboard, offering valuable insights for future asynchronous
BCI-based mobility systems. This represents a step forward
in allowing users to drive with their thoughts while retaining
control authority throughout the entire operation.
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