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Abstract— For robots to coexist with humans in diverse
situations, their ability to fluently interact with humans becomes
important. One important aspect of interacting with humans
is being able to understand what the humans are doing to
provide appropriate forms of assistance. Previous works used
information from hands and objects to understand the human
behavior and its context. However, as environments, tasks, and
interaction targets become more complex, it becomes difficult to
design assistance rules that can cover the variety of situations
with such simple reasoning methods. Therefore, we develop
a robotic system that combines action recognition with an
activity-level knowledge bank to assist a human performing
a sequential activity. The system maps the detected action
to objects related to the task using the knowledge bank and
delivers the objects to the human through handover. To eval-
uate the performance of our system, we conduct comparative
experiments with two other simple systems: command-initiated
and random-trial. Through experiments on two cooking tasks,
our system is compared to the two simple systems on the basis
of human idle time and object idle time. Results show that our
system leads to the shortest human idle time. The object idle
time of our robot system is similar to the command-initiated
system and much shorter than the random-trial system. We
conclude that robots that understand human actions can more
efficiently assist humans to accomplish their tasks.

I. INTRODUCTION

Robots are not just science fiction characters. For many
decades, robots have mainly been used for repetitive tasks in
static environments such as factories. In recent years, how-
ever, robots have been brought into various situations with
humans. Humans have started to use robots in environments
such as restaurants and cafes, where close interaction with
people is required. In such situations, robots cannot only do
what they are preassigned to do because human behavior
is sometimes unpredictable and their needs continuously
change. For example, for a chef in the kitchen, rather than
a robot that always performs the same task of delivering
kitchen tools, a robot that recognizes the chef’s current
needs and provides the appropriate assistance would be of
greater help. In other words, robots need to understand both
the environment and the human behavior to help humans
seamlessly.

There are works in the HRI community that aim to
design such smarter assistance robots. Some use object or
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Fig. 1. Brief overview of the main robot system. The robot picks up and
hands over objects based on the recognized action and the knowledge about
the activity (in the photo 2, 3, 5, and 7)

hand detection algorithms in order to understand human
activities when providing assistance [1], [2], [3]. Others have
additionally utilized speech recognition techniques to provide
the robot with a richer context [4]. However, as environ-
ments, tasks, and interaction targets become more complex,
it becomes difficult to design rules that can cover the variety
of situations with such simple detection methods. Instead,
recognizing human actions on the whole and determining the
human’s need from them using general knowledge about the
activity can resolve such difficulties. Brooks et al. use action
recognition so that the robot can understand which action
the human is performing [5]. Their work addresses discrete
tasks where the robot is required to provide assistance only
once. Many complex tasks such as cooking or furniture
assembling, however, consist of multiple sequential subtasks.
Thus, robots should be able to not only recognize multiple
actions but also provide different types of assistance.

In this work, we develop a robot system that provides
assistance to humans performing complex, sequential tasks.
Our system consists of an action recognition module, an
assistance selection module, and an execution module. The
robot first recognizes the human’s current action through the
action recognition module. Then it performs the appropriate
assistance in relation to the recognized action using general
knowledge about the human activity. Without additional rules
such as the specific order of actions the robot needs to
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Fig. 2. Overview of the robot system

perform, the system uses only the activity goal and the
information of each human action to select the appropriate
actions. Actions recognized by our robot system and the
executions of assistance in regard to the recognized actions
are illustrated in Fig 1.

To evaluate how helpful our proposed system is, we
compare our system with two other systems. The first is a
command-initiated system in which the robot performs the
actions that the human commands. The second is a random-
trial system in which the robot consistently performs actions
randomly. Through experiments with N=12 people on two
daily life tasks, we compare our system to the other two
systems in regard to the human idle time, i.e. time waiting
for the robot [2], [6], and the object idle time, i.e. time for
which objects are left unused. Furthermore, through a Likert
scale survey on user satisfaction, we showed that users prefer
our system especially in the aspect of interaction efficiency
to the random-trial system.

The results show that our system greatly reduces the
time that the human has to wait compared to the other
two systems. The time that objects are left unused is also
greatly shorter than the random-trial system, and similar to
the command-initiated system which already yields optimal
object idle times since the humans are waiting for the
requested object. These results support our assumption that
robots should be able to understand human actions in order
to help humans more efficiently.

II. RELATED WORK

In the field of human robot collaboration, two ways
existing research uses to make robots understand human
actions are rule based methods and data driven methods.
Rule based vision includes tracking of object positions [1],
[2], hands [3], [7], [8], [9], the upper body [10], or the total
body [4].

Baraglia et al. [2] focus on the problem of when to
help by comparing three modes: human-initiated help, robot-
initiated reactive help, and robot-initiated proactive help. To
understand the current task, the robot recognizes the location
objects through an RGBD camera. The research concludes
that human-initiated mode is best for social interaction, and
robot-initiated proactive mode achieves better team fluency.
Casalino et al. [9] research on enhancing the efficiency
of collaboration in respect to the robot idle time through
predicting human actions based on hand position. Other

research using hand tracking focuses on how a human and
a robot collaborate to use common objects while avoiding
collisions by the robot asking the human whether it can pick
up the object [8]. Park et al. [10] use the position of the
upper body to deal with the collision issue itself as a research
topic to build a better motion planner for collaboration with
humans. Liu et al. [4] use human tracking data and speech
data as interaction histories which are input data for the robot
to learn how to help.

Data-driven vision includes action recognition for the
robot to understand current status of humans. Brooks et al.
[5] use action recognition to decide how to help without
human command. They measure proactive assistance against
command-driven assistance and find out that users prefer
proactive assistance. Some research uses action recognition
even for deciding when to help [11].

The most relevant research is done by Braglia et al. and
Brooks et al. Baraglia et al. compare three modes to decide
when to help; however, the system estimates human actions
based on object positions. We assume that this estimation
works well since the tasks are moving objects. On the
other hand, our experiment sets cooking as a task which
requires understanding of more complex actions; thus, we
use action recognition and link the detected actions with
general knowledge about activities instead of using a rule-
based vision system. Our research is similar to the research of
Brooks et al. in terms of using action recognition. However,
they concentrate on assembly tasks and connect one task
to one robot assistance. Because daily life tasks consist of
diverse subtasks, we make a task contain various types of
actions.

III. METHOD

A. Overview of Our Main System

The overview of our main system is as in Fig 2. The
system is composed of three modules: action recognition,
assistance selection, and execution. The action recognition
module takes in a sequence of RGB images from the camera
and performs action recognition. The outputs of this module
are possibilities for each action, which are then delivered to
the decision making process. Through simple rules based on
human actions, the next module decides whether or not the
robot has to help. If the decision is to help, it determines the
specific action of the robot. Finally, the robot moves based on
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predetermined paths to pick up and place objects. Detailed
explanations of each part are as follows.

Action Recognition We use SlowFast network to detect
human actions from videos [12], [13]. Specifically, we
sample 32 frames with a sampling rate of 2 and set the
ResNet depth, alpha, and beta inverse to 50, 4, and 8,
respectively. For training, the Kinetics model provided by
Facebook Research is used as a pre-trained model.

The training data is collected by using the command-
initiated system in order to collect data both with and without
a moving robot. The videos used for training are categorized
into two groups. In one, a human controls the robot using the
app to send commands. In the other, another person who is
not working controls the robot for proactive assistance. The
camera view includes both the task space with objects and
the upper body of the human. Videos taken as 640 X 480
size are resized to 256 X 341 size and used for training. The
total length of the video data collected is about 30 minutes.

The labels of the videos describe human actions such as
cutting a tomato or stirring soup. For higher accuracy, the
duration of action does not contain pre- or post-actions such
as picking a tomato or placing cut pieces onto a plate.

For real time action detection, we use a frame buffer so
that half of the frames are identical to the previous video. The
network outputs consist of probabilities of each action and
only the most probable action is considered as the predicted
action. If the probability of the predicted action is more
than 72%, the action is passed on to the assistance selection
module; if not, the predicted action is treated as ‘None’.

Assistance Selection Humans are capable of helping
others even when they do not know exactly what task the
others are doing. When designing assistance robots that help
humans in similar ways, it is difficult and often inefficient
to give the complete information of all tasks due to the
diversity of possible task executions. Activities that consist of
sequential tasks, such as cooking or assembling furniture, can
be divided into ordered stages that are made up of multiple
related tasks. For example, the tasks that make up a cooking
activity can be divided into the stages ‘preparing ingredients’,
‘combining food’, ‘tasting and adjusting’, and so on. In such
cases, knowing which tasks and objects are related to which
stage may be sufficient to assist the activity.

In our system, we provide the robot with a cooking knowl-
edge bank that contains the necessary information about
cooking activities in order to assist the activity. Specifically,
the cooking knowledge bank maps each human action to a
specific stage of the activity, and contains a list of objects
that are related to each stage. For example, for the stage
of ‘preparing ingredients’, the knowledge bank maps the
ingredients ‘bread’, ‘tomato’, and ‘cucumber’ as ingredients
for a sandwich.

Using the cooking knowledge bank, the robot can provide
an appropriate assistance to the human performing a specific
stage of the activity. The robot first detects which stage the
human is at through the action recognition module. The
detected action is then mapped to a specific stage by the
knowledge bank. Then, knowing the possible objects that

Fig. 3. A photo of the robot and the task space

it can handover to the human, the robot chooses an object
that belongs to that particular stage. When multiple objects
are feasible to the stage, the robot chooses one according
to a predefined order. In order to provide the object to the
human as soon as possible, the robot acts immediately once
a possible object is proposed.

B. Basic Platform Info

ABB yumi robot which has two arms with 7 axes each
is used for the system. RAPID server is installed on ABB
yumi and used to plan paths and control joints. The type
and destination of movement are sent by Yumipy python
interface.

Realsense D435i is used to collect RGB images for action
recognition. This camera is also used for the random-trial
system to detect whether the human uses the object. The
camera is fixed on ABB yumi to film the human and the
task space together.

In front of ABB yumi, a table is set with kitchen toys.
Since the maximum weight that an arm of yumi can lift is
0.5kg [14], we use toys instead of real kitchen tools. Fig 3
shows the setup of our robot for the experiments.

C. Task Representation

We choose cooking as our target task since it is a daily
activity that contains various actions. Furthermore, a person
can naturally ask for help when they are cooking, in situ-
ations such as when they need to hold a hot pot or need
to keep stirring soup. Thus we set two cooking tasks: Task
A for preparing dinner and Task B for preparing breakfast.
During each task, the robot helps the human four times. The
robot picks up an object and places it where the human can
easily reach. For instance, while the human is stirring soup,
the robot picks up a bowl and places it next to the gas stove.
Then, the human can hold the hot pot with two hands and
safely pour the soup into the bowl.
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Fig. 4. The control app design, the left side is for task A and the right
side is for task B

D. Implementation of Comparison Systems

To evaluate how well our system performs, we develop
two other systems for comparison. For the first comparison
system, we used a command-initiated system similar to the
command-driven assistant in [5]. In this system, the human
decides when and how the robot will help. To make the
interaction simple and robust an Android app, as shown in
Fig 4, is used to choose which object the robot will give.
The chosen object’s label is sent through socket transport to
a computer that is connected to ABB yumi. Then, the robot
moves to pick up the requested object following the same
predetermined path as our main system.

The other comparison system is random-trial system where
we assume that the robot does not understand anything about
the humans’ activities. The system chooses a random object
to give from the list of unused objects using the python
random module. Then, the robot picks up the object, places
it, and takes a photo of the task space. After waiting for
5 seconds, the system takes another photo. With a mask to
consider only the space nearby the placed object, histograms
of h channels in each hsv photo are calculated, and are
compared using Bhattacharyya distance. Examples of photos
used in this system are shown in Fig 5. If the similarity is
high, we assume that the human does not pick up the object,
then the system takes the object again to place it where it
was. If not, the robot goes to its home position. Then, this
object is removed from the unused object list. After waiting
for 2 seconds, the system repeats this process until the unused
object list becomes empty. The robot movement is the same
as others except the robot places the object, waits for the
human, and moves depending on human action.

IV. EXPERIMENTS
Our study was completed with 12 participants. Participants

conducted task A and task B with different systems. For
instance, one participant performed task A with our main
system (action recognition system) and task B with the first
comparison system (command-initiated system). Therefore,
4 data for each specific task and system were collected.
We required the participants to treat the kitchen toys as

Fig. 5. Right top: Right after the robot places the bread on the tray, Left
top: Masked area of the tray right after placement, Right bottom: After
waiting for 5 seconds, Left bottom: Masked area of the tray after 5 seconds

real ingredients and cooking equipment and to spend 5∼10
seconds on each action. However, we did not use a timer to
avoid explicitly setting the timing of robot assistance. Then,
we requested them to read a recipe in which the objects that
will be given by the robot were written in red.

After both task A and B were completed, we surveyed
the participants on their user satisfaction of each system.
The survey was conducted on a Likert scale of 1 to 7, 7
showing highest agreement. The 7 sentences that we used
are as follows:

• The robot could accurately perceive the situation.
• The robot accomplished the right task at the right time.
• I will use the robot again.
• The robot was helpful.
• The actions of the robot were distracting. (reverse scale)
• The robot was easy enough to use.
• The robot and I collaborated efficiently together.
We recorded the experiment procedure and measured two

objective factors. The first factor is human idle time as in [2].
Human idle time is the time gap between the time a human
finishes the action prior to robot assistance and the time they
reach out for the object delivered by the robot. The second
factor is object idle time. This is the gap between the time
the robot places an object in its designated space and the
time the human grabs the object. For the second comparison
system (random-trial), object idle time is summed up for
each object. The timeline figure Fig 6 shows how the human
idle time and object idle time are measured.

V. RESULTS

A. Objective Metrics

The duration of all four actions was each measured and
analyzed using one-way ANOVA. We used the alpha value as
α = 0.5; thus, Fcrit = 3.2093 for task A and Fcrit = 3.2145
for task B. For meaningful comparison, the results of three
subtasks (one from task A and two from task B) that were
incorrectly performed by the participant were excluded from
our results. The results of the analysis are as Fig 7 to Fig 10.

Human Idle Time
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Fig. 6. Timeline example including human activities, human idle time, and
object idle time

(a) Task A: F = 5.1607, p < 0.05
(b) Task B: F = 10.3588, p < 0.05

Fig. 7. Human idle time graph for task A

Fig. 8. Human idle time graph for task B

With our system, participants did not have to wait long
for both task A and B. As shown in Fig 7 and Fig 8, the
human idle time of our system was the shortest among the
three systems, with participants waiting for around 5 seconds
in task A and 10 seconds in task B on average for each
subtask. This is significantly lower the human idle times of
the command-initiated system and the random-trial system
which are all greater than 20 seconds.

Object Idle Time
(a) Task A: F = 3.3029, p < 0.05
(b) Task B: F = 11.1239, p < 0.05
The object idle time of our system is similar to that of the

command-initiated system as shown in Fig 9 and Fig 10. For
both systems, objects were left unused for around 5 seconds
on average for each subtask. This is lower than one third of
the object idle time of the random-trial system.

B. Subjective Metrics
We used an average score of each system from the survey

answers of each user as the user satisfaction score. We used

Fig. 9. Object idle time graph for task A

Fig. 10. Object idle time graph for task B

the alpha value as α = 0.5; thus, Fcrit = 3.4668. Then,
the user satisfaction score was analyzed through A repeated-
measure Analysis of variance (one-way ANOVA). After that,
since users did not experience all three systems, one-tailed
paired T-test (α = 0.5) was used to compare experiences of
a user who collaborated with the robot in the same systems
based on the ANOVA result.

Fig. 11. User satisfaction score

The user satisfaction score was the highest for our system
as shown in Fig 11. However, the p-value was higher than
0.05; F = 1.3901 indicating that the average scores of
the three systems are not significantly different. This can
be for a number of reasons. Due to the small number of
participants to our experiments, the amount of data was not
sufficient. Furthermore, users rated the system with their own
standards causing the variance to become large. Nevertheless,
the one-tailed paired T-test of the question "The robot
and I collaborated efficiently together" for our system and
random-trial system showed a meaningful difference as in
Fig 12 : p < 0.05. Thus, users preferred our system to the
random-trial system especially in the aspect of collaboration
efficiency.

300

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 17,2024 at 07:01:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 12. User satisfaction score for collaboration efficiency: "The robot
and I collaborated efficiently together"

VI. DISCUSSION

In the aspect of the human idle time, our system did
not require participants to click buttons to send commands
or wait for the right object to be chosen during random
trials, reducing unnecessary time. Furthermore, since the
robot started moving while the participants were conducting
other tasks, the participants did not have to wait long until
the robot finished the action. Therefore, the human idle time
of our system was the shortest of three systems.

Moreover, although the robot proactively assists a hu-
man in our system, the object idle time was similar to
the command-initiated system and much smaller than the
random-trial system. With the command-initiated system, a
human issues an order and keeps focusing on the object
that the robot hands over, which is why the object idle
time is optimal. Because the object idle time of our system
was similar to the ‘optimal’ command-initiated system, it
is possible to conclude that our system efficiently assisted
humans.

However, because we used kitchen toys, some people fin-
ished their actions too quickly. In another case, a participant
even kept cooking an egg until the robot in the random-trial
system handed over salt. Thus, using real tools will be better
for collecting data related to execution time of subtasks.

Furthermore, in this system, we used a simple rule-based
algorithm that uses information from a knowledge bank
to decide the appropriate assistance. However, such rule-
based algorithms may not be able to model the diversity of
human activities. Therefore, in future study, designing a more
complex model that considers not only the current human
action but also the context of the environment could help
the robot become more robust to various situations.

Finally, one participant who used the command-initiated
system issued a command before he started the action
previous to the one that requires robot assistance. After a
few interactions with the robot, he seemed to realize that the
robot requires some time to pick up and put down an object.
This kind of proactive assistance determined by humans can
serve as a good reference to develop a better system.

VII. CONCLUSIONS

In this paper, we propose a robotic system that provides
assistance to humans performing sequential tasks through
handovers of related objects. The system first detects the

human’s action and then finds related objects using the
knowledge bank of the activity. Through the experiment
comparing our system to the command-initiated system and
the random-trial system, we show that our system can effec-
tively help humans by reducing time for which the human
should wait. Furthermore, through a user satisfaction survey,
we show that users preferred our system particularly to the
random-trial system. We, however, use a simple rule-based
algorithm with the knowledge bank to decide the appropriate
assistance, where the robot delivers any object that belongs
to the particular stage. A more intricate algorithm may be
required to be robust against anomalies and unexpected situ-
ations. Furthermore, we require the mapping between human
actions and the activity stages, which could be replaced by
automated techniques such as action segmentation. Through
these advances, robots will be able to better understand
human activities and provide assistance in various situations
robustly.
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