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Abstract—In this paper we present a hybrid brain-computer
interface (BCI) system that manipulates simultaneous localization
and mapping (SLAM) for convenient control of a robot. Due
to the low accuracy of classifying multi-class neural signals,
using brain signals alone has been considered inadequate for
precise control of a robotic systems. To overcome the negative
aspects of BCI systems, we introduce a hybrid system where
the BCI control of a robot is aided by SLAM. Subjects used
electroencephalography (EEG) and electrooculography (EOG)
to remotely control a turtle robot that is running SLAM in
a maze environment. With the supplementary information on
the surroundings provided by SLAM, the robot could calculate
potential paths and rotate at precise angles while subjects give
only high-level commands. Subjects could successfully navigate
the robot to the destination showing the potential of utilizing
SLAM along with BCIs.

Index Terms—brain computer interfaces, simultaneous local-
ization and mapping, electroencephalography, robot control

I. INTRODUCTION

Brain-computer interfaces (BCIs) are systems where hu-
mans can use their brain signals to communicate with a com-
puter or a device. While the use of BCIs have been researched
widely over the past few years, the application of BCIs in
controlling robots and vehicles has been of great interest.
Non-invasive BCIs that use electroencephalography (EEG) and
electrooculography (EOG) to control not only wheelchairs but
also drones or robots have been widely researched .

Precision is crucial when controlling robots or vehicles.
Unlike the traditional techniques of controlling, such as key-
boards or joysticks, BCIs often lack the precision in their
control mechanics. This is because accurately classifying the
subjects commands from neural signals is highly difficult. Be-
cause classification accuracy greatly decreases as the number
of classes to categorize into increases, emerging BCIs tend
to support only the minimum number of commands. This
means that subjects can only make high-level commands such
as move forward or turn left, making accurate control and
navigation of the robotic system much more difficult.

While forward movements are fairly simple, turning left
or right, or rotating at a certain angle require more precision
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than just turn left and turn right commands. If a system could
predict users’ intended direction of rotation, users may use
simpler commands instead of having to continuously interact
with the system. To cover up for the lack of precise user
commands, the precision of machines and their ability to
recognize the environment are utilized. For example, new
wheelchair interfaces are proposed where the human and the
wheelchair have shared control, and the use of sensors such as
LiDARs and Kinects have been proved to make the navigation
of such machines easier [1] [2] [3].

In this paper, Simultaneous Localization and Mapping
(SLAM) is manipulated with BCI for easier control of a turtle
robot [4]. Using a mixed model of EEG and EOG, subjects
navigate the robot across a maze using only the commands
move forward, turn left, or turn right [5]. The robot, equipped
with a LiDAR and an IMU, runs SLAM within the maze
environment. Using the information about its location and
surrounding, the robot finds potential paths that the subject
could direct to and rotates exactly to the direction of that path
at the subjects commands. This way, even though subjects can
use only a limited set of commands, the robot can maintain
precise movements by determining the subjects intended path
and adjusting to its environment. The results show that with
the hybrid BCI system, subjects are able to navigate through
the maze easily with their limited commands.

The remainder of this paper is organized as follows. We first
explain the details of the hybrid BCI. Then we describe the
procedure of our experiments and share our results. Finally we
conclude with a general discussion on limitations and future
works.

II. METHODS

A. Overview

In the proposed hybrid brain-computer interface (BCI), the
control of the robot was shared between the subject and the
robot controller. The subject, through the BCI, had control
over the high-level movements of the robot such as to move
forward or to turn left, while the robot controlled the precise
movements such as how much to turn. Fig. 1 shows the control
flow between the BCI, robot controller and the robot hardware.
Communication between the BCI and the robot controller was
done through TCP sockets while communication between the
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Fig. 1. Control flow of the hybrid BCI system.

robot controller and the hardware was done through Robot
Operating System (ROS) Topics [6].

B. BCI

The BCI was responsible for sending high-level commands
to the robot. To send these commands, subjects used a com-
bination of electroencephalography (EEG) and electrooculog-
raphy (EOG). To measure the EEG and EOG signals from
the subjects, BrainProducts actiCHamp actiCAP was used.
Both the EEG and EOG signals were obtained from four dry
electrodes from the frontal cortex of the subject (F7, FP1, FP2,
F8). The ground electrode and the reference electrode were
placed on the forehead and on the TP10 electrode respectively.
Fig. 2 shows the configuration of the electrodes used. A band-
pass filter was applied to our signals to filter the data within
the 1 to 15Hz frequency range.

The EEG model was used for classifying neural signals of
forward movements and resting states: subjects concentrated
start or stop the forward movement of the robot and remained
still to take no action. The EOG model was used for classifying
neural signals of left and right rotations: subjects blinked their
left or right eye to make the robot turn left or right respectively.

In order to classify both the EOG and EEG signals, clas-
sification models for the two signals were constructed sepa-
rately. For the classification of eye blinking signals, xDAWN
algorithm was used to lessen the noise from the signal. The
support vector machine (SVM) was utilized for building the
classification model. For the EEG signals, a common spatial
pattern (CSP) was used in order to extract features during
concentration. The signals were then applied to the SVM for
the classification model.

C. Robot Controller

The robot system was built on top of the iClebo Kobuki
Turtlebot 2. The ROS integration of the 2D SLAM algorithm
of Google Cartographer was used with Microstrain’s 3DM-
GX5-25 as the IMU and Velodyne LiDAR’s PUCK VLP-16
as the point scanner, both of which were built on top of the
Kobuki Turtlebot.

The robot controller was responsible for forwarding the
commands from the BCI to the robot, while also considering
the current environment. Furthermore, the robot was respon-
sible for keeping track of the position of the robot relative to
the current map, which was managed using the information
provided by SLAM. With the information from SLAM, the
robot controller performed two main functions: path dependent
rotation and obstacle aware movement.

Fig. 2. The four dry electrodes for EEG and EOG signals are indicated in
blue. The ground electrode is indicated in red and the reference electrode is
indicated in green.

When subjects commanded the robot to turn either left or
right, the robot controller used its position and map infor-
mation to immediately find all the potential paths that the
robot could head into. By setting a minimum length and
width for potential paths, and searching its surrounding map
for such paths, the robot controller formed a list of all the
paths the robot could take from the current point. This can be
represented as the following equation:

paths = {a| − π ≤ a < π, free(a, p, l, w)} (1)

where a is the angle of the path, p the current position of the
robot, l the minimum length of a path, and w the minimum
width of a path, such that free(a,p,l,w) returns whether a l
meter long and w meter wide path starting from p at an angle
of a is free. Fig. 3 shows how (1) chose potential paths in
respect to the robot’s surroundings.

Using its current position on the map, the robot decided the
closest path on the left or right side. Once the goal path was

Fig. 3. The robot is represented as the black circle in the middle and obstacles
are indicated in dark gray. The blue sections (W, X, Y, Z) indicate paths with
no obstacles along the way and the red lines (a1, a2, a3) indicate the final
chosen paths. No paths are chosen from section X because it does not meet
the minimum width.
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chosen, the robot rotated towards that direction until its global
orientation matched the orientation of the goal path. With this
algorithm subjects didn’t have to continuously send commands
to the robot in order to control the length of rotation. Instead
subjects only had to send a single command every time they
wanted to rotate to the next path.

When subjects commanded the robot to move forward, the
robot controller used the information from SLAM to make sure
that there were no obstacles directly in front of the robot. If any
obstacle or wall appeared within the minimum safe distance,
the robot instantly halted. This function was added because
the inaccuracy of EEG signal classifications could lead to the
subject not being able to successfully send a stop command
to the robot in urgent situations. Because the robot could only
move forward, the minimum safe distance was checked only
at the front of the robot.

III. EXPERIMENTS

Five male subjects aged between 22 to 27 volunteered to
carry out the experiments. 2 subjects had previous experience
with BCIs while the rest had no experience. Each subject
performed one trial of the experiment, consisting of a model
training session followed by a robot navigation session. Sub-
jects were required to keep the actiCAP on for the whole
duration of the experiment, from the beginning of the model
training session until the end of the robot navigation session.
Before the start of the experiment, subjects were briefly
informed by the instructor about the steps of the experiment
and were also allowed to take a look around the map.

A. Environment

The experiments were performed in a maze-shaped map in
a closed room of roughly 7 meters by 7 meters in size. The
shape of the maze changed randomly for each subject but it
always contained at least three branches. At the beginning of
the experiment, the robot was positioned at the leftmost branch
of the maze, facing the center of the map. Different positions
on the map were numbered randomly, acting as destinations
for the robot. After the subjects took a look around the map
in the first room, they were sent to a second room, so that the
only way to observe the position of the robot was through the
map visualizer on the laptop provided.

B. Model Training

Before controlling the robot in the navigation session,
subjects had to complete a model training session. Subjects
were seated in the second room, in front of a laptop through
which the EOG/EEG signals were to be classified. The training
session took roughly five minutes for each model and consisted
of 10 trials of EOG training and 10 trials of EEG training.

At each trial of the EOG training, subjects were visually
cued with the words ”blink left eye”, ”blink right eye”, and
”rest”. Right after each cue, subjects were required to perform
the action by blinking their left eye, blinking their right eye,
and resting (gazing at the monitor) respectively. The changes
in EOG signals when subjects blinked their left and right eye

Fig. 4. Visualization of the EOG signal changes on the four electrodes from
the frontal cortex: (from the top) F7, FP1, FP2, and F8.

are shown on Fig. 4. For the left eye blink, signals on the
F7 and FP1 channels changed significantly while for the right
eye blink, signal changes mainly occurred on the F8 and FP2
channels.

After the EOG training was finished, at each trial of the
EEG training, subjects were visually cued with the words
”concentrate” and ”rest” where subjects were required to either
concentrate on the screen or just rest after each cue. For the
concentration phase the subjects were asked to lightly close
their eyes and focus on their breathing until the screen in
front of them flashed to indicate the end of the phase. While
subjects kept their eyes closed, 5 two second EEG samples
were collected sequentially. During this period an increase
in the power spectral density of EEG signals in the alpha
frequency range could be detected [7].

C. Robot Navigation

Once the model training session finished, subjects were
instructed to control the robots. Subjects could observe the
position of the robot only through the laptop which displayed
a birds-eye view visualization of the map produced by SLAM
running on the robot.

At the beginning of the robot navigation session, subjects
were given a random sequence of numbers by the instructor.
Each number indicated a specific area in the maze-shaped map
and the subjects were required to navigate the robot to visit
each of these points in the given order. To control the robot,
subjects were expected to perform the actions that correspond
to the intended command: left blink to turn left, right blink to
turn right, concentrate to start/stop moving forward, and rest
to do nothing.

IV. RESULTS

To examine the positive impacts that SLAM can have on
the proposed hybrid BCI system of this paper, the accuracies
of the detection of EOG and EEG signals were calculated
separately. The accuracies shown on Table I were calculated
using 10-fold cross validation, where the signals from a single
trial were tested with a classification model built from the rest
of the signal data.

The cross-validation results for EOG signals contained
three classifications: right eye blinking, left eye blinking, and
resting state. The average accuracy of the evaluation of EOG
classification for the five subjects was 84.6%, with subject 2
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Fig. 5. Figures A and B show the trajectories of successful trials. The circular numbers represent the destination points on the map. The robots were required
to visit each destination point in increasing number order. Figure C shows the trajectory for an unsuccessful trial where the robot got stuck at an obstacle not
shown on the map.

having the highest accuracy of 97% and subject 1 having the
lowest.

The evaluation for EEG signals contained two classifi-
cations: resting state and concentration state. Signals from
a single trial, which consisted of 10 two second resting
and concentration EEG samples, were evaluated while the
EEG data from the remaining trials were used to build the
classification model. The accuracies for the five subjects in
the EEG cross validation were averaged at 78.4%, with the
highest and lowest accuracies of the individuals being 88%
and 66%, respectively.

In addition to the cross validation of the EOG and EEG
signals, the navigation of the robot using the hybrid BCI was
examined. Ultimately, 4 out of 5 subjects were able to finish
the task provided by the instructor. One subject failed to finish
the given task due to a small obstacle that was outside the
scanning range of the LiDAR. The command through the BCI
took a certain delay and the robot crashed with the obstacle,
which led to the stop of the experiment for that subject.
Although one subject failed to complete the given task, 4 other
subjects successfully navigated the vehicle through the desired
positions.

Fig. 5 shows the trajectories of the robot’s movements for
successful and unsuccessful trials, plotted using RViZ. Fig. 5-
A and 5-B show that in most cases, only a single command
was needed to rotate to the correct direction from a junction.

TABLE I
CROSS VALIDATION ACCURACY

Subject EOG EEG
1 0.73 0.86
2 0.97 0.82
3 0.80 0.66
4 0.80 0.88
5 0.93 0.70

Av. 0.85 0.78

Furthermore, Fig. 5-A shows the case where the robot stopped
autonomously when it confronted an obstacle (at area 1),
thereby preventing itself from crashing. The trajectory for the
failed trial shown on Fig. 5-C shows that the robot did not
return to its original position, implying that the experiment
was aborted. Although the obstacle was positioned right in
front of the robot, the LiDAR was not able to recognize it, as
shown on the map.

V. DISCUSSION

We have proposed a new hybrid BCI system that manip-
ulates SLAM to make the control and navigation of a robot
through a given maze easier. By using the information from
SLAM, precise autonomous control of the robot such as path
dependent rotation and obstacle aware movement was possible.

However these designs of our system are quite inflexible
and have many limitations. The path dependent rotation can
only work in fork-shaped environments such as the maze-
shaped map in our experiment. Although this could be useful
in environments with many branches such as corridors, out
in the open this mechanism would not work. Furthermore,
because we use the map information from SLAM to detect ob-
stacles, while stationary obstacles such as walls can be easily
detected, moving obstacles such as people or cars would not
be detected as obstacles. Like this, real life environments will
be much more complex than the simple maze environment we
experimented in. With effective manipulation of information
from SLAM, we aim to create more flexible hybrid BCIs that
support automatic path finding and dynamic obstacle detection.

Through this study we have shown the potential of combin-
ing SLAM with hybrid BCIs. Although BCIs are researched
widely these days, current technology does not support appli-
cations of BCI that are suitable for daily use. Due to the low
classification accuracy of neural signals and the large amount
of training needed beforehand, using BCIs alone to control
mobile robots is not feasible. In this paper we aimed to solve
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this problem with a system that manipulates external sources
of information and as a result requires less work from BCIs.
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